
OPTOELECTRONICS LETTERS                                                                                                           Vol.14 No.5, 1 September 2018 

Depth image super-resolution algorithm based on struc-
tural features and non-local means* 
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The resolution and quality of the depth map captured by depth cameras are limited due to sensor hardware limitations, 
which becomes a roadblock for further computer vision applications. In order to solve this problem, we propose a new 
method to enhance low-resolution depth maps using high-resolution color images. The structural-aware term is intro-
duced because of the availability of structural information in color images and the assumption of identical structural 
features within local neighborhoods of color images and depth images captured from the same scene. We integrate the 
structural-aware term with color similarity and depth similarity within local neighborhoods to design a local weighting 
filter based on structural features. To use non-local self-similarity of images, the local weighting filter is combined with 
the concept of non-local means, and then a non-local weighting filter based on structural features is designed. Some ex-
perimental results show that super-resolution depth image can be reconstructed well by the process of the non-local fil-
ter and the local filter based on structural features. The proposed method can reconstruct much better high-resolution 
depth images compared with previously reported methods. 
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Nowadays, more and more RGB-D cameras with high 
performance and low price are available in the market. 
Devices such as the Microsoft’s Kinect or the Asus’s 
Xtion Pro can provide real time depth and color infor-
mation with high quality. RGB-D technology has been 
used in many useful applications such as robotics object 
recognition, pose estimation and hand gesture recognition. 
But compared with color images of the same scene, the 
resolution and quality of depth images are limited due to 
hardware limitations and more accurate depth infor-
mation cannot be provided for computer vision applica-
tions directly. 

To enhance the resolution of depth maps, a lot of in-
vestigations[1-5] have been made on upsampling depth 
images. The super-resolution algorithms can be broadly 
classified as two: one class is based on the input of a 
depth image sequence, and the other is based on the input 
of a depth image and a higher-resolution color image. 
The algorithms in the first class have strict requirements 
of image translation among the depth image sequence, 
which can hardly be satisfied in some practical applica-
tions. The algorithms in the second class take advantage 
of the fact that the color image can provide significant 
information to enhance the raw depth map. So we con-
centrate on the algorithms based on a depth image and a 
color image of the same scene in this paper.  

Yang et al[6] applied joint bilateral upsampling[7] with 
color information to enhance the resolution of depth im-
ages. This approach can obtain a depth map with sharper 
boundaries. However, it is sensitive to noise in the color 
image and a recovered depth map often contains some 
false edges. He et al[8] presented a guided image filter 
whose output is locally a linear transform of the guidance 
image. Tu et al[9] proposed an edge feature-guided super-
resolution reconstruction method based on joint bilateral 
filter. The depth map is divided into different regions 
according to the edge feature and different color similari-
ty weightings are calculated in different filtering regions.  
Yang et al[10] solved depth map super-resolution problem 
by developing an optimization framework, in which local 
structural features of color images are used to construct 
the regularization term. Zhang et al[11] modeled the depth 
image super-resolution as an energy function optimiza-
tion problem via local and nonlocal prior. In Ref.[12], the 
depth super-resolution was also formulated as an optimi-
zation problem using a redescending m-estimator to 
measure the neighboring constraints for depth. 

The bilateral filter is an edge-preserving filter, origi-
nally introduced by Tomasi and Manduchi[13]. The bilat-
eral filter uses both a spatial filter kernel and a range fil-
ter kernel evaluated on input images. Let p denote one 
pixel at the input image I, and the filtered result is: 
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where f is the spatial filter kernel, such as a Gaussian type 
centered over p, and g is the range filter kernel, centered 
at the image value at p. Ω is the spatial support of the 
kernel f , and kp is a normalizing factor, the sum of the f·g 
filter weights. Edges are preserved since the bilateral fil-
ter f·g takes on smaller values as the range distance or the 
spatial distance increases. The bilateral filter has been 
used for various image processing tasks like image de-
noising[14]. 

Joint bilateral filter is a variant of bilateral filter in 
which the range filter is applied to a second guidance 
image GI. Thus, the filtered result is: 
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The only difference to Eq.(1) is that the range filter uses 
GI instead of I. 

Given a high resolution image GI, and a low resolution 
solution S, the joint bilateral upsampling[7] applies a spa-
tial filter to the low resolution solution S, while a similar 
range filter is jointly applied on the full resolution image 
GI. Let p and q denote (integer) coordinates of pixels in 
GI, and pi and qi denote the corresponding (possibly 
fractional) coordinates in the low resolution solution S. 
The upsampled solution HS is then obtained as: 
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Buades et al[15] proposed the non-local means algo-
rithm which takes advantage of the high degree of redun-
dancy of any natural image. They assumed that every 
small window in a natural image had many similar win-
dows in the same image. One can define “neighborhood 
of a pixel i” as any set of pixels j in the image so that a 
window around j looks like a window around i. All pixels 
in that neighborhood can be used for predicting the value 
at i. 

Given an image { }( ) |v v i i I= Î , the value NL(v)(i) es-
timated by the non-local means algorithm is computed as 
a weighted average of all the pixels in the image: 

( )( ) ( , ) ( )
j I

NL v i i j v jw
Î

= å  ,                            (4) 

where the weights {ω(i,j)}j depend on the similarity be-
tween the pixels i and j and satisfy the usual conditions 
0≤ω(i,j)≤1 and ( , ) 1

j
i jw =å . Let Ni denote the neigh-

borhood of pixel i, and then the similarity between the 
pixels i and j will depend on the similarity of the intensity 
grey-level vectors v(Ni) and v(Nj). The pixels with a simi-
lar grey-level neighborhood to v(Ni) will have larger 
weights on the average. 

Given a high resolution color image GI, and a low res-
olution solution S, we first perform bilinear interpolation 
to S to obtain an initial high resolution depth image. Thus 
the depth image S has the same resolution with the color 

image GI. 
Inspired by Ref.[16], we propose a local weighting fil-

ter which uses a range filter kernel evaluated on the in-
terpolated depth image S together with a color filter ker-
nel and a structure filter kernel calculated on the input 
color image GI. Let p and q denote coordinates of pixels 
in GI, and the filtered result HS is: 
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where Np denotes the neighborhood of pixel p which is a 
square patch around the pixel. And ωd(p,q) is the range 
similarity term: 
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ωc(p,q) is the color similarity term: 
2
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ωs(p,q) is the structure similarity term: 
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If p and q are on the same structure, ωs(p,q) will be large. 
Here, sGI(p')={sxGI(p'), syGI(p')} is the x- and y- im-
age gradient vector at p. |Np| is the number of pixels in 
neighborhood  Np. σc, σd and σs are the decay factors of the 
three similarity functions, which control the decay rate. 

According to the non-local means method, the objec-
tive pixel is not only related to adjacent pixels, but also 
related to other pixels in the image. Therefore we extend 
the local weighting filter Eq.(5), combining it with the 
non-local means method. That is, a pixel value is com-
puted as a weighted average of all the pixels in the image. 
And the weights depend on the similarity between the 
patch centered by the objective pixel and the patches cen-
tered by the other pixels. More formally, using the non-
local weighting filter based on structural features, the 
filtered result is: 
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where N
d ( , )p qw  is the non-local range similarity term: 
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N
c ( , )p qw  is the non-local color similarity term: 
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where SNp and GINp represent the patches centered by the
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pixel p in depth image S and color image GI  respectively. 
The non-local structure similarity term N

s ( , )p qw  is the 
same with the local structure similarity term ωs(p,q), 
which is determined by its mathematical formula. 

To reduce computational complexity, a pixel value is 
commonly computed as a weighted average of pixels in a 
square search window instead of all the pixels in the im-
age. Thus Eq.(9) can be rewritten into: 

N N N
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where SWp is the search window centered by pixel p. 
The pseudo code of the depth image super-resolution 

algorithm using the above-mentioned filters is shown in 
Tab.1. 

 
Tab.1  The pseudo code of our algorithm 

Input: a low resolution depth image S and a high resolution 
color image GI of the same scene 

Preprocessing: Perform bilinear interpolation to S to obtain an 
initial high resolution depth image. 
Algorithm: 

for each p SÎ  
    weight=0, sum=0; 
    for each pq SWÎ  

      sum+= N N N
d c s( , ) ( , ) ( , )qS p q p q p qw w w ; 

      weight=+ N N N
d c s( , ) ( , ) ( , )p q p q p qw w w ; 

    end for 
    1 sum/weightpHS = ; 

end for 
 
while 1k kPSNR PSNR e+ - £  

for each 1p HSÎ  
      weight=0, sum=0; 
      for each pq NÎ  

        sum+= d c s1 ( , ) ( , ) ( , )qHS p q p q p qw w w ; 

        weight=+ d c s( , ) ( , ) ( , )p q p q p qw w w ; 
      end for 
      1 sum/weightpHS = ; 

end for 
k=k+1; 

end while 
1HS HS= ; 

Output: a high resolution depth image HS  

 
Experiments are performed to investigate the perfor-

mance of the proposed algorithm on depth image upsam-
pling. Our results are compared with those of other state-
of-the-art methods. The images for test are taken from the 
Middlebury stereo datasets[17] and Ref.[6].  

There are several parameters that need to be tuned. We 
fix a search window of 15×15 and a square neighborhood 
of 5×5 in the calculation. In the non-local weighting filter, 
σc and σd are set to 2, while in the local weighting filter, 

they are set to 0.05. Setting σs to 0.3 has always given 
good results.  

Both the spatial filter kernel f used in joint bilateral fil-
ter and the structure similarity term ωs used in the pro-
posed filter are the geometric closeness functions which 
control the effect of spatial domain on the weight. Fig.1 
shows the difference between f and ωs. Fig.1(a) is a part 
of image Art taken from Ref.[17]. The square area is the 
neighborhood of the point near the nose of the statue, 
which is enlarged in Fig.1(b). Fig.1(c) and Fig.1(d) show 
the values of f and ωs in the neighborhood. It can be seen 
in Fig.1(c) that the less the distance between the pixel and 
the square center, the greater the value of f. In Fig.1(d), 
the more similar the structure between the pixel and the 
square center, the greater the value of ωs. 

 

       
(a)                                         (b) 

       
(c)                                         (d) 

Fig.1 (a) Part of  image Art; (b) Enlarged display of the   
square in (a); (c) Values of the spatial filter kernel f ; 
(d) Values of the structure similarity term ωs 
 

In Fig.2, three depth and color image pairs taken from 
real-world scenes in Ref.[6] are tested to compare the 
upsampling performance of our algorithm with joint bi-
lateral filter[7] and guided image filter[8]. The resolutions 
of the input RGB images and depth images are 640×640 
and 64×64, respectively. RGB images and low-resolution 
depth images are shown in Fig.2(a) and Fig.2(b). The 
results of three methods are shown in Fig.2(c)—(e).  

We also make comparison between our method and 
other methods on the Middlebury stereo datasets[17]. The 
resolutions of the RGB images and ground truth depth 
images are both 1 376×1 088. For each depth image, we 
downsample it using the scaling factors of 4 and 8 as the 
input low-resolution depth image. In order to better ob-
serve the detail of super-resolution construction, we 
zoom in the local parts of the original images and the 
results of these methods are in Fig.3. 

It can be seen that the bilinear interpolation method 
produces the most blurred result. This is due to its simple 
use of low-resolution depth image, and thus it can be 
called a “blind” upsampling method. Joint bilateral fil-
ter[7], guided image filter[8] and our algorithm perform 
better than bilinear interpolation for the benefit of a high 
resolution prior to guiding the upsampling. But the depth 
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image upsampled by joint bilateral filtering has obvious 
texture transfer effect because besides spatial distance, 
this method only considers the image intensity difference 
as the neighborhood similarity for depth propagation. The 
guided image filtering can do it better, but the effect is 
still noticeable in its results and the object edges become 
fuzzy. The method we proposed can further reduce tex-
ture transfer effect and make it imperceptible. And our 
method can also smooth small fluctuations and preserve 
sharp depth discontinuities. Obviously, our results are 
more visually similar to ground truth depth images. 

We evaluate the performance of the algorithms not on-
ly through the subjective visual effect, but also by peak 
signal to noise ratio (PSNR). The PSNR metric is adopted 
as the quantitative similarity measurement between up-
sampled depth image and the ground truth depth image. 
The PSNR values of implementations of different meth-
ods on the Middlebury stereo datasets are presented in 
Tab.2. Compared with other methods, the proposed algo-
rithm has a considerable improvement for PSNR. 

We present an algorithm to upsample a low resolution 
depth map using an auxiliary high-resolution RGB image. 
A structure-aware weight is integrated with a range 
weight and a color weight to form a local weighting filter. 
Considering self-similarity in images, we propose a non-
local weighting filter by combining non-local means and 
the local weighting filter. A low resolution depth map is 
first processed by the non-local weighting filter to inhibit 
jagged appearance of edges. Then the output result will 

    

be filtered several times by the local weighting filter 
based on structural features to obtain sharp depth bounda-
ries. Both quantitative and qualitative experiments on the 
benchmark dataset demonstrate the effectiveness of our 
algorithm. Experimental results show that our method 
outperforms previous work in terms of both PSNR and 
visual quality. 

 
Tab.2  Quantitative evaluation under PSNR metric on 
the middle bury dataset 

 
Image 

Bilinear inter-
polation 

Joint 
bilateral 

filter 

Guided 
image 
filter 

Ours 

art 4× 37.531 7 38.045 2 37.622 6 38.348 8 

8× 35.454 2 35.700 5 35.535 4 36.604 8 

books 4× 39.430 2 39.960 7 39.739 2 40.132 3 

8× 36.731 5 36.747 5 36.786 3 36.895 7 

Moebius 4× 42.324 9 42.545 6 42.485 0 43.514 1 

8× 40.156 7 41.096 9 40.595 6 42.400 2 

Reindeer 4× 36.968 6 37.263 6 36.976 4 37.633 7 

8× 34.883 8 35.225 3 35.023 3 36.421 1 

                 
 

                 
 

                 

(a)                                     (b)                                      (c)                                     (d)                                     (e) 

Fig.2 (a) RGB images; (b) Low-resolution depth images; (c) Results of joint bilateral filter; (d) Results of guided 
image filter; (e) Results of our algorithm 
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(a)                                    (b)                                    (c)                                    (d)                                    (e)                                    (f) 

                
(g)                                    (h)                                    (i)                                    (j)                                    (k)                                    (l) 

Fig.3 (a) RGB image; (b) Downsampled depth image with the scaling factor of 4; (c)—(f) Results of bilinear inter-
polation, joint bilateral filter, guided image filter and our algorithm using (b) as the input depth image; (g) 
Ground truth depth image; (h) Downsampled depth image with the scaling factor of 8; (i)—(l) Results of bilinear 
interpolation, joint bilateral filter, guided image filter and our algorithm using (h) as the input depth image 
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